
## Derivation of Tafel Equation

## For a reversible reaction on surface: $Ox + e \leftrightarrow Red E^{\circ}$



$$i = FAk^{0} \left[ C_{O}(0, t)e^{-\alpha f(E - E^{0'})} - C_{R}(0, t)e^{(1-\alpha)f(E - E^{0'})} \right]$$

f = F/RT,  $C_o$ ,  $C_R = concentration <math>\alpha = transfer coefficient$ 

When  $|\eta| >= 100$  mV, the back-reaction is insignificant and can be neglected

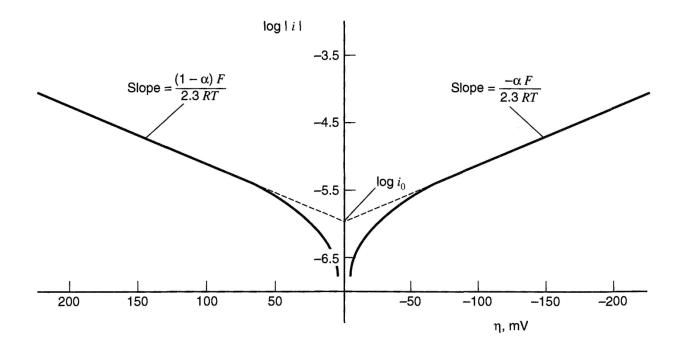
i = 0, when 
$$FAk^{0}C_{O}(0, t)e^{-\alpha f(E_{eq}-E^{0'})} = FAk^{0}C_{R}(0, t)e^{(1-\alpha)f(E_{eq}-E^{0'})} = i_{o}$$

i<sub>o</sub> = exchange current

Assuming the surface concentration is close to bulk concentration

$$i = i_0 \left[ e^{-\alpha f \eta} - e^{(1-\alpha)f \eta} \right]$$

When the absolute value of  $\eta >= 100$  mV, then the back reaction is negligible, we have


$$i = i_0 \exp(-\alpha F \eta / RT)$$
 or  $\eta = \frac{RT}{\alpha F} \ln i_0 - \frac{RT}{\alpha F} \ln i$ 

This is the deduction of Tafel equation:  $\eta = a + blogi$ 

$$b = -(2.3RT/\alpha F)$$
, when  $\alpha = 0.5$ ,  $b = 118$  at r.t. b is called Tafel slope

Both exchange current and Tafel slope are obtained from the plot of  $\eta$  vs. log i

Plot of log i and overpotential can give i<sub>o</sub> and Tafel slope



In electrochemistry, we use current density to describe the reaction rate J = i/A, i is the current, and A is the surface area.